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Hydrodynamic dispersion in a hierarchical network with a power-law distribution
of conductances
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Dispersion is studied on a two-dimensional hierarchical pore network with a power-law distribution of
conductances, i.eR(g) ~g“ %, with g e (0,1), andu is the disorderliness parametgt>0). A procedure for
computing tracer dispersion transport on hierarchical networks was developed. The results show that the
effective diffusion coefficient of the network scales similarly as conduction on the same lattice. This means that
the disorder length scales for conduction and diffusion processes are the same, and can be predicted from
percolation theory. The dispersivity=D,/U, was found to diverge rapidly gs— 0. The result is in agree-
ment with the model developed by Bouchaud and Geoi@d?. Acad. Sci(Parig 3071431, 1988. A limiting
value of u=0.45 was found, below which the convection-dispersion equation is no longer valid.
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[. INTRODUCTION limit. The proportionality constang is the so-called disper-
sivity, and it is a length scale in the system that is used to

The transport of solutes through porous media has "€haracterize the dispersion process. The dispersivity is usu-

ceived cons@erable attention in the last decades, due in Pay ly related to the correlation length of the velocity field,
to the necessity of carrying out c_;Ieanu_p operations of _SUbSl_J(/'vhich in turn originates in the permeability distributions.
face water reservoirs. Tracer dispersion has also driven in- A dispersion process described by Gaussian-like plumes
(Eisually requires homogeneous properties of a medium. This

can be achieved in finite-difference formulations by enlarg-

for some time that the conve_nnonal convect|9n-d|spers!oqng the local simulation domain to contain sufficiently large
equation does not always predict correctly the time eVOIUt'O%ampIes, but issues on upscaling of the permeability field

of solute plumes in porous medji]. Often, the problem can \aye g be faced. Violation of the system size requirements
be attributed to characteristics of the velocity fields, such a?requently leads to define position- and time-dependent
long corr.elatlon. 'e'.‘gth$ on the order Of. or Iarg_er than thetransport coefficients, as the case of a dispersion coefficient
system size. 'I.'hls.snuatlon can b.e found in the hlghly heterol—n the convection-dispersion equation. An example can be
geneous distributions of hydraulic conductances, inherent & und in systems at their conduction percolation threshold,

many porous media. . . . . _because they do not exhibit a characteristic length 4@ale
The general form of the convection-dispersion equationry,,¢ 5 4150 the case of systems with modeled fractal perme-
[4]is the following: ability fields, for which the transport coefficient grows with-
9C out bound. Log-permeability fields have been found to be-
S TU-VC=V (D VO, (1) have as random fractals on scales ranging from 10 cm to
45 km[8]. Another way of exhibiting fractal properties is by
whereC is the mean local concentration of a solutecor-  having a non-Euclidean topology or connectiig).
responds to the Darcy velocity, arfdlis the dispersion ten- The relevance of relating permeability length scales to
sor. Solute or tracer plumes that evolve as described by E@nalog quantities in dispersion problems is apparent. For this
(1) are referred to as Gaussighl. In practice, this implies purpose, it is then necessary to study systems with well char-
that the Central Limit Theorem holds, and the first two tem-acterized conductivity length scales, for which scaling is well
poral moments contain all the statistical information on theunderstood. For a highly heterogeneous system, the evalua-
plume[6]. It can be stated similarly for the spatial distribu- tion of transport properties should be inexpensive enough so
tion. that calculations can be carried out in large samples. Addi-
The axial or longitudinal dispersion coefficient, i.e., thetionally, the computation of the dispersion coefficient should
component of the tensor along the principal direction of thebe realizable in those samples.
mean flow, depends in two distinct ways on the so-called Angulo and Medind10] performed renormalization cal-
Peclet number, defined as the ratio of diffusion to convectiortulations of the effective conductance on hierarchical net-
time scalegPe=UL/D,,) [4]. L is a typical length scale, for works. Bond conductancg was drawn from a power-law
instance, the system size, abg, is the diffusion coefficient distribution p(g)=ug* 1. The parametef. can take either
of the tracer particle. For small values of Fee<1), the  positive or negative values. This parameter controls the de-
axial dispersion coefficient depends on molecular diffusiongree of heterogeneity of the medium, in a way that 1
asD,«D, (or, more precisely, a®,=D,/ 7, with 7 being the  approaches a homogeneous system, while 0 is the most
tortuosity), whereas for P& 1, but still in the creeping or disordered case. These authors defined a disorder I&ggth
linear flow regimeD;=£U. The latter defines the convective as the scale beyond which the system becomes effectively

terization of oil and water reservoif$,2]. It has been known
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homogeneous. Ag.— 0, & was found to diverge withu, chical network results for the case of conduction, so that the
with the following scaling form:ép ~ ™. Exponentyv cor-  appropriate percolation properties be considered. The same
responds to the correlation length of ordinary percolafildn  should hold for hydrodynamic dispersion.

Hierarchical lattices, together with a power-law distribution  Here, the scaling of a convection-dispersion process is
of conductances, provide well characterized systems, fostudied in limits of Pe~0 and Pe—«. The effective disper-
which heterogeneity properties of the conductance distribusjon coefficient is determined from the first two moments of
tion are understood. Paredes and Alvargtij extended the e transit-time distribution. In the limit of Pe 0, the trans-

renormalization analysis to the case of square networksyort is expected to be controlled solely by molecular diffu-

They demonstrated that a percolation analysis suffices Qg in the lattice. This process maps exactly on the conduc-

evaluate the strongest disordered limit of a family of dIStI’I—tion problem, and hence all that is known for conduction

butions; i.e., in the critical region in the vicinity @f=0. All h S S .
o : . . : ould apply in this limit. In the second limit of Pex, £ is
of these indicate that studying conduction on hierarchical he selected quantity.

structures provides a means to determine the scaling behav-"_": TR . . .
ior of the distribution of conductances. This well character- This article is d|V|ded.|r.1to five sections. After Sec. , the
neral method for obtaining moments of the residence-time

ized system provides a highly heterogeneous conductan < . ) .
field, which is one of the ingredients for scale-dependenfistribution(RTD) is explained in Sec. Il. Because the con-
dispersion processes. vective limit is a special case for the scheme of solution, Sec.

Giona et al. developed an exact renormalization theory'”lis _deyoted_ to a discussion of details of the procedl_Jre in
for linear transport problems in fractal medi®,12], this limit, which cI.oser re!ates to that employed by Viller-
convection-diffusion being a special case in their formula-maux and Schweichl6]. Finally, the results are presented,
tion. Their main interest was the determination of exponentéollowed by a discussion and conclusions.
of anomalous diffusion in fractal supports. Their scheme is
baseq on the dlscretlzatlon_ of the spatial differential OPeray ~cn\ERAL RECURSION EQUATIONS FOR TEMPORAL
tors, i.e., Laplace and gradient operators, and the solution to

. . MOMENTS
the Laplace transform of the resulting problem. The solution
focuses, as in the work by Rowet al.[13], on the renormal- This section describes the renormalization procedure for
ized transfer function. However, the discussion in thosehe generalized bond transfer function, from which one can
works focused on cases with homogeneous conduction.  derive the recursion equation for moments of the transit-time

Caceres studied non-Gaussian dispersion, the so-callefistribution. The proposed scheme is based on the solution of
anomalous dispersion, by using multistate continuous timehe transport problem by using a transfer-matrix algorithm
random walk method14]. The focus of Caceres’ research [13]. The Laplace transform of the tracer flux through each
was the understanding of the Coats-Smith model that halsond can be written as follows:
been used for a long time to explain departure from Gaussian _ _
behavior. The process requires a volume of stagnant fluid in -j(0,9) a(s) b(s)\{ C(0,s)
some pores of a given medium. In the present work, tracer 7 = o) dis)/\ ¢ ’ )
dispersion is analyzed on a regular hierarchical lattice, with a i) Cd.s)
power-law distribution of bond conductances. However, proyypere 5(0,9 andj(l,s) represent the transformed fluxes at

vided that all network bonds are aligned with the pressure, . . ~
gradient, then there is always non-negligible flow in all the inlet and outlet of a bond, respectively, &0(D.s) and

pores, in the limit of an infinite Peclet number. In this senseC(l,s) are the corresponding concentrations. Entgeb, c,
non-Gaussian dispersion may be the result of the nature @éindd contain geometrical information and fluid flow prop-
the velocity distribution, which has been found to be fractalerties.
on certain supportgl5]. Coefficientsa(s), b(s), c(s), andd(s) are obtained at the
Tracer dispersion is investigated on a Euclidean hierarchizeroth level of the lattice from the exact solution to the
cal lattice of effective dimensiod,=2. The power-law dis- Laplace transform of a local convection-diffusion equation,
tribution of conductances is appealing, because the disord@tus the assumption of complete nodal mixing. Henceforth,
length scale for conductivity relates to the disorderliness paany linearly concentration-dependent contribution to the lo-
rameteru. The dispersion coefficient is computed for a wide cal transfer function can be incorporated into the formula-
range of Pe to show that in the hierarchical lattice, dispersiotion.
occurs much as in square networks, from the scaling view- Figure 1 shows the main motif of the hierarchical struc-
point. Villermauxet al. showed this for a family of regular ture used here. The network is constructed following a recur-
self-similar lattices without geometrical disorddi6]. As in  sive procedure in which each bortlink) of the lattice is
the case of Villermauwet al,, the hierarchical lattice simula- replaced by the main motif to produce the next level of the
tions should capture the controlling effects on mechanicastructure, as illustrated in the figure for three steps of this
dispersion due to the flow field associated to the pore-sizerocedure. Mass conservation for an incompressible fluid
distribution. Deviations from Gaussian behavior overall areyields the values of the pressure at the nodes and thereby the
proposed to come from the disorderliness of the porous meiuid fluxes (current$ along the bonds, as well as the effec-
dium in itself and not from the particular connectivity struc- tive conductance. It is assumed that the hydraulic conduc-
ture of the hierarchical lattice. Paredes and Alvardtib] tance of a given bond is proportional to the square of its
showed that care must be exercised in the analysis of hieracross-sectional area; i.eg~AZ The latter permits one to
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® ~ ~ ~
—j1=a,C + 1y, Cy. (6)
Now, the entering flux can be expressed in terms of the
concentration values at the inlet and outlet nodes, respec-
—_— —_— — tively, C, and C,:
~ bic, )“‘ ( bby, >~
—jo=\a- Cot|-—|C.. 7
Jo (I a, +d 0 a, +d, 2 (7)
L As a result,a,=[a,—b,c,/(a,+d,)] and b.=[-bb, /(g

+d,)]. To find c, andd,, we proceed in a similar fashion, by
Co I < I € putting C, into Eqg. (4), as

0 O 0

CiG Cy by

_Zb (‘9 @I%) i (4 Y4 Tz:—(m)ao’f(du—m)az, (8)
i)\ a)d J~z G dy |G

which leads to Ce:_C||C|/(a|| +d|) and de:d” _C||b||/(a||

<o e Ccy +d,). Once the recursion equations fafs), b(s), c(s), and
) 0 d(s) are obtained, moments of the transit-time distribution
can be derived from the Taylor series expansion of the
—h)_(a &)@ Laplace transform of the exiting flux arourse0.
[72 ]_[Ce 0@](@} The boundary condition at the inlet section of the entire

network is J,(t)=4(t), such thatj,:l. Hence, the Laplace

FIG. 1. Hierarchical lattice employed in this work. Top portion transform of the exiting flux of tracer@o), is the transfer
of the figure illustrates the iterative process to generate the networlfynction or generator of moments for the whole network
The lower portion shows how the dispersion process is[17,18. If all the moments are finite, one can carry out a

renormalized. series expansion of the form
distribute the conductance alofiastead ofA,), and thereby ~ = ~o 1 (9230
to determine fluid flow velocity. For instance;~q;/g"?, Jo(8) =[Jolso + s s FOJ' 552 P FOJ' e (9

wherei is the bond index, and; andv; the corresponding
fluid current and mean conduit velocity. This is simply Each term in the equation corresponds to a moment of the
achieved by carrying out combinations in series and paralleransit time distribution; i.e [17]:

of lattice bonds. All of this is necessary to determine the

strength of the velocity field in the network for the subse- = (- 1),1[%] (10)
quent solution of the bond transport equation. 98" |eo

Fluxes coming from adjacent bonds meeting at a node are ] ) } ]
additive (parallel combination in Fig. )] so that their sum This formulation leads to recursion equations for the co-
yields the transfer function. For those bonds in series, fluxe§fficientsa, b, ¢, andd at different orders. In oth(er) wggds,
can be expressed in the following form for bond I: one can write renormalization expressions 4@) bg s Co s

andd™ by expanding the following expression:
e

(‘jo>:<a| bl><CO> 3) = b ¢

)7\ al\g ( ~Jo(5)> i} (ae<s> e<s>) (~o(s>) an
j2(s) Ce(S) de(9) Ca(9)

and similarly for bond I

with respect to the parameter Once the expansion is per-
- a b ¢ formed, coefficients at each order srare grouped together
( ~Jl) = ( i )(f)y (4)  to obtain the renormalized coefficients at zeroth-, first-order,
i2 c di/\C, etc.

~ B Let us recall thatC(s)=0, from the boundary condition
wherej, is the transformed incoming flux to bond I, while  at the outlet(a sink. The generator of moments is then de-
is the exiting flux for the same bond. From mass conservatermined as

tion applied to the traceﬁl is the transformed incoming

tracer flux for bond Il. From Eg&3) and(4), the value ofE:l —30(3) = CelS) :ﬁ(s). (12

can be eliminated by writing out the expressions for the 2(s)

fluxes: Finally, by carrying out the expansion @of expression
L 5 (12), any moment can be derived from the ratigs)/a(s).
j1=¢Co+d,Cy, (5) For instance,
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al’c® W derivatives of the renormalized transfer function with respect
(= W - @- (13)  to thes parameter fos=0:
At the zeroth level in the hierarchg(s), b(s), c(s), and @ = (1" = (= )" &3 20
: : pe =(te) =(=1) : (20
d(s) correspond to the following expressions: 93" ) <o
a(s) = - m- meothm,, (14) Following the last expression far=1 leads to the mean
transit time:
—m
b(s) = r_nf , (15 pd =l + o1+ [0gps + wau]. (21)
sin
m The superscript denotes the order of the moment;;g.(é).,
on is the first-order moment of thi¢h branch. In the expression
c(s) = ms_ (16) above, the fact tha®;(0)=1 and also that
sinhmg ( aG-)
I
— =
d(s) = m-mgcothm, (17 IS /0

has been employed. In addition, from mass conservation,
wherem=Pe/2 andn,=Pe/2+|(Pe/2%+s. Notice that by w;+w,=1. The recursion equation for the second moment
constructions as well ag are dimensionlesgiormalized by  takes the following form:
diffusion timel/D,, wherel is the bond length As can be

" . . . (2 = (2 (2) (1) (1) (1)
seen, the expressions involve hyperbolic functions as well as e ~ [wip1” + wapz” ]+ A w1y + wap ] [w3pg

exponential. In order to deal with large and small Peclet + WP+ [wau? + wau?']. (22)
numbers simultaneously, limiting formula faf”, b™, ¢,
andd™ as Pe~0 and Pe-= have been developed. Mainly the first two moments of the RTD were evaluated,
because in the convection-dispersion equation, the dispersion
. RECURSION EQUATIONS FOR LARGE PECLET coefficient is independent of higher-order moments. At the
NUMBERS zeroth level in the lattice, in the limit of Pe «, all moments

The evaluation of the transport properties using the most?" be written as

general expressions fqt) e_md(t2>,_ or (of), is computa_t_lon— M(n) = (/o))"= ['i/(Qi/\@)]n, (23)

ally expensive, even for hierarchical structures. Additionally,

the value of Pe required to reach the limit-RPec puts a  Wherel; is the length of theth branch(l is the same for all
burden on numerics; e.g., round-off errors. Expressions fobonds. To show possible departure from Gaussian behavior,
moments of the transit-time distribution can be simplified inresults of skewness are also obtained, for the limit of an
the purely convective limit, because all bonds of the latticeinfinite Péclet number. It is known that this central moment
have a nonzero fluid velocity, given that by construction allor cumulant should be zero for Gaussian procefse$rom

the bonds are oriented. Hence, a simpler renormalization ré=q. (18), the natural logarithm is taken, and then the succes-
cursion equation can be built, much on the line of the worksive derivatives with respect & evaluated as=0, provide

done by Villermauxet al. [16]. expressions for the cumulants, as follows:

For each bond in parallel arrangemésée Fig. 1, there N
is a volume fraction given by the ratio between the bond K= {aln—Ge(s)] (24)
fluid flux and the total flux in the effective branch; i.e, . as" <0

=0i/Zq; (g; denotes the fluid flux through each bond in the )

arrangement The effective transfer function for the particu- Where«y is thenth cumulant ofG(s). _

lar network used here can be written upon renormalization as HOWeVer, itis easier to compute moments recursively, and
then calculate the skewness from the first three moments as

Ge(9) = [01G1(8) + 0,G5(9)] [3G3(9) + w,G4(9)] = P(9),

=,®_-93,2,(1) (173
kg= ) = 3u ™ + 2L P (25)
(18) ’
or in a more general form, V. RESULTS
Gels) = 1_1[ (2. “’iGi) (19 First, in the limit of low disordef x> 0.5), the dispersion

J process is shown to occur as expected for regular networks
where the index indicates a member of the set of branches[19]. This means that limits of Re 0 and Pe-« are studied
in parallel arrangements, arnds for arrangements in series. to determine whether moments of the transit-time distribu-
Here, for instancep;=0,/(0;+0y), and similarly for all other  tion exhibit the expected dependence on system size and
branches of the network. As shown in Ed8), the transfer Péclet number; more specifically”) ~L2" (L in bond units,
function is the generator of moments for the RTB(S)]. when Pe-0. On the other hand, as Pex, moments of the
Successive moments of the transit-time distribution, at listribution depend on Pe &8)~Pe™, and with the system
given stage of renormalization, can be obtained by takingize ast™)~L". It is also shown that the dispersivity reaches
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FIG. 2. First four moments of the transit-time distributitfPe LS,
=0). The straight lines are power-law fits through the simulation ) o o
points for different values of the system side=2%, in bond units, FIG. 3._ Scah_ng qf the d|ffl_Js_|on c_oeffluent._As expectepl, when
) and #=1.0. Temporal moments were normalized by the diffusionthe ef'fec_tlve d|ffu5|_on coefficient is normalized by using the
time /Dy, asymptotic value of itfor L> £p), all the curves collapse when the

system size is normalized by using the disorder length of the con-

. . duction problem.
a constant value as Pe«; in other words, that the ratio P

D,/U becomes independent of the value of Pe.
Second, the scaling of the lattice effective diffusivity is
examined, i.e., for Pe: 0, to show¢ as a function ofu in the

limit Pe— oo, Although the scaling of the dispersion process Hierarchical networks of the type used here have a con-

's of interest at any value of Pe, it is not dealt with in CVETY nectivity structure that differs from Euclidean networks
regime with respect to Pe. Up to four moments of the transit: y '

time distribution are computed; i.e., the values(t with Therefore, not aII_ nodes are_equally_ important. This could
—0.1234 f : i . Th ber of Iaf'fect the conclusions regarding scaling of transport proper-
inz;tic’)ns, \'/a’riés(zjre\;)?ar;()jtijr?gsgz ?rzg ?\Iéfva.)rk ;g:rm er ot rédlies in comparison with other networks. It will be shown that
) ) o the hierarchical network yields normal results, which means

In the simulations, P=(U)I/D,,, where(U) is the volu- y

. i ! o that transport properties observed are a consequence of geo-
metric average of the microscopic bond velocity in the net-

e ~ "““metrical disorder alonédistribution of conductancgsand
work, andD,, corresponds to the tracer diffusion coefficient ¢ .

. o m S not a topological featuréconnectivity. When u=1, net-
in the fluid (independent of concentratipnSince we are ,oks are quite homogeneous, and hence a diffusion process

working in the creeping flow regime, the Péclet number carypq, 4 he a simple wandering through the lattice with not too
be rescaled by multiplying bond velocitiéer fluxes by a itterent a probability of entering any borigroportional to

constant factof17]. In the limit of Pe—0, the effective dis-  yhe ¢ross-sectional area of the bondsigure 2 shows the
persion coefficien{D;~Dy,) relates to the variance of the first four moments of the transit-time distribution as func-

Low Péclet number limit (Pe—0)

. . . . . 2 . . .
transit-time distributionsy in a simple way[17]; tions of the system siz&w=1.0). Diffusion being the con-
. L2 trolling transport mechanism implies théf) ~ (L?/D,,)", as
lim Dy = — (26)  depicted in the plot. These results were obtained at a value of

Pe-0 \“'60% Pe strictly equal to zero.
This relationship defines the diffusivity of the network.  In previous workg¢10,11], the conductance of the network
On the other hand, as Pex, in the absence of stagnation s a function of system size could be collapsed onto a single
effects[16], the limiting expression connectirig with ¢2is  curve by rescalings. andL. This was achieved by using the

the following[16,17: asymptotic value o_f condu.ctan'eimr L<¢p) and.the disor-
s der length, respectively. Diffusion and conduction processes
D, = 02(U> 27) map exactly onto one another, and hence the scaling of the
=Tt diffusion process should be equal to that of conduction. To

verify this, simulations have been carried to determine the
effective diffusion coefficient at several values @f (with
D, P& ©<0.1). Figure 3 summarizes our findings. As expected, the
E=——~ 0%— (28) disorder length turns out to be proportional to the correlation
) L . : : )
length of ordinary percolation. The relationship
which defines dispersivity in this context. The result makesép ~ p“uses, with a value o#=1.635, the same divergence
sense only whe, is a linear function of velocity. exponent of the percolation correlation length on this lattice.

or in terms of the Péclet number,
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FIG. 5. Moments of the transit-time distribution in the limit

FIG. 4. The figure shows the transition from the diffusion con- . .| _19-4 and 4=0.8.

trolled regime for dispersion to the convective limit for three values

of u. L=1024. ¢ andL are dimensionless. ) .
One has to look into the features of the velocity distribu-

tion to understand the nature of the rapid divergence. It
should be apparent that the contrast of transit time by con-
vection is responsible for the spreading, in the purely con-
vective limit. To investigate this, the shape of the velocity
distribution was estimated from bond-velocity histograms. It
has to be to recalled that in order to compiken this limit
To determine the transition from a diffusion-controlled (Pe€—), it was assumed that the fluid velocity was nonzero
transport towards a convection-dominated regime, 5imu|ai.n all bonds. This condition can be realized Only if the lowest
tions were carried out at values pf away from =0, and value of the velocity in the network is large enough to satisfy
for lattices of various sizes. As the conductance distributiorfhe convective limit. Asu is set to be smaller, the velocity
becomes Wider' ina |ogarithmic sense, and more disorder“distribution widens or, said differently, the contrast between
ness appears in the network, the transition from pure diffu¥min @Ndvmax grows. A large number of realizations, depend-
sion to hydrodynamic convection exhibits a nonlinear regioning on lattice size, were accumulated to obtain relatively
with respect to Pe that enlarges progressively before reachirfgnooth and detailed histograms. However, the statistics for
the linear dependence on PE9], as depicted in Fig. 4. The low velocity values do not have enough sampling, and there-
latter reflects the fact that some regions of the lattice remaifiore another indicator, Skewness, was calculatsdown
practically stagnant, while others are already in the conveclaten. Figure 7 represents histograms of velocity in logarith-
tive limit. The smaller the value of,, the larger the effectis, Mic scale that clearly indicate ample distributions that ap-
because a greater contrast of conduction exists in the systefroach a minimum of velocity in a power-law fashion. The
From the figure, it is also observed that the values of thdlux distribution behaves similarlynot shown. The slopes
Péclet number required to fulfill the condition of a constantof the linear part of the velocity histograms were fitted to
dispersivity grows larger with decreasing At the same Yield m=1.87u, but the meaning of this was not investi-
time, the dispersivity value grows rapidly with the disorder- gated.
liness in the distribution of conductances. This turns out to Let us now look at model presented by Baetial. [20],
be an indication of a possible divergencetpisu is dimin-  originally developed by Bouchaud and Geordg@d]. The
ished. Figure 5 depicts the expected dependence for mdnodel was also discussed in a review paper by Bouchaud
ments of the RTD in the convective limit") ~ (Pe™. and_ Qeorge$22], with simi!ar conclusions. The proposed
Expressiong21) and (22) were used to calculate disper- §tat|st|cal r_nodel for dlspersmq can account for large contrast
sivity for several values of. Figure 6 depictg as a function N convective paths and consists of a simple convective by-
of u, for three network sizes. A rapid divergence is observed@ss: In the model, the dispersion coefficiéntthe absence
for 1< 0.4. Notice that althoughis a large for small values ©Of diffusive pathg can be written in the following form
of u, the curves corresponding t0=256 (network order (Bacriet al.[20] ):
equal to 8 andL=4096 (order 13 overlap. This means that (U)
the expected disorderliness is relatively small as compared to D= 2—(1 -PAf+B-1PE, (29
dispersivity. However, the standard deviation foturns out p
to be too large to evaluate the disorderliness length, as washereg is the ratio between the smallest and largest velocity
done for conductiohl1]. values in the system, and —f) is the fraction of slow by-

It should not come as a surprise that the scaling region
<0.4) is similar to that found by Angulo and Medina0].

High Péclet number limit (Pe— )
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w FIG. 6. Dispersivity as a function qf. Insets

© show¢ as a function of network size. Bothand

10 & are in bond units.
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passesé;, on the other hand, is a typical correlation length of dispersion process should be Gaussian. Henceforth, higher
the bypasses, which is attributed to the disorder length ofentral moments should be zero, or else additional informa-
conduction. If3 is a small number, then the dispersion coef-tion would be required to describe the dispersion process.
ficient becomes proportional & *. Therefore £ can become For this purpose, the skewness was calculated over a large
a large number, as found in the simulations. The latter wouldumber of realizations for several network sizes and values
explain the rapid divergence observed. of w. To compare ad_equately, the valuexgfwas normalized
From the velocity distributions, the minimum and maxi- BY using(t)®; otherwise, the value of would depend on the
mum velocities were recorded. The ratio was plotted versugressure drop set in the calculations. The mean value; of
u to determine whether it behaves &swith respect tou should diminish as the network size is increased until reach-

(Fig. 8). The resemblance with the result shown in Fig. 5 isind & vanishing value.
striking, indicating that the velocity distribution contains  Figure 9 showslogyo(«s)) versus logL) for several val-
most of the necessary information on the dispersion process€s ofu. The idea, rather taking the mean valuegfwas to

A different way of looking at the trends observed for the show the mean order of magnitude and its trend as function
dispersivity on the lattice is by analyzing higher moments ofof network size. Notice that for values pf<0.45, x5 ap-
the RTD. As previously discussed, in order to be able topears to diverge. A linear fit of Idgs) versus loglL) yields a

apply the convection-dispersion equation, the hydrodynamigery good correlation coefficient. In principle, a prefixed low
value of k3 could be used to determine the necessary network

0 . . . . size by extrapolating the trend. Howeves; does not de-
5t 10 b
/-:;v 10 + leo |
3
‘2’ 60
& 15t £107 |
= <
>é 0° |
20
l020 |
25 1 1 L 1
250 200 150 100 50 0 0
In(v/Vmax) 07 10" 10°

W
FIG. 7. Bond velocity distributionhistogram at the zeroth
level of the hierarchical network. The network size is 1024. The FIG. 8. Ratio between the largest value of fluid velocity in the
histogram was calculated over a large number of realizations fonetwork and smallest value of velocity versus Network size is

each value ofu. 1024.
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crease with network size fqr<0.45. This would add to the extremely heterogeneous. The correspondence is found by
explanation as to why diverges so rapidly fop.<0.4. using a model developed by Bouchaud and Geogjeasl.
[21]. In the model, the rati@ between the smallest and the
largest value of velocity yields the value of dispersiuitgr
V. CONCLUSIONS B 1>1). It is found thatB diverges similarly ag with the
A method for computing tracer dispersion transport Wasdlsorder parameter. However, the precise dependencefwith
developed and implemented in this work. Limiting cases'S @ funct|_on_of the network structure, and the results was
consisting of the purely diffusive limit, i.e., for Pe0, and shown to '“d'Cat9 a trend_. . .
the purely convective case, Peo, were also developed. In real geological media, a large value of dispersivity is

The method translates into efficient algorithms for the Com_frequently observed. However, the data shown here do not

putation of moments of the transit-time distribution in hier- imply Iacl'<.of homogeneity .Of the system, at least in terms of
archical lattices. To model geometrical disorderliness, ermeability or monophasic transport, but rather suggest a

power-law distribution of conductance®(g) ~ g*~%, with ack of validity of the transport equation. It was shown that,

. . . indeed,¢ reaches a constant value. The lack of convergence
as the disorderliness controlling parameter, was used. In th

limit of low disorderliness, when is unity, it was shown 6f the skewness suggests that the transport equation is in-

that the dispersion coefficient exhibits the same features o valid below a value ofy<0.45. This means that for the

served in regular networks as a function of the Péclet numbef'ﬂtlce sizes simulated here, non-negligible higher central

[19]. This means a diffusive behavior at low values of Pe,moments are to b_e found. . .
and a linear dependence with respect to Pe, as ®eThe The results evidence that hierarchical networks can be

transition from diffusion-controlled transport to convective used to study the effect of geometrical disorder; in particular,

transport was shown to depend strongly on the value of th‘ghey can be employed to relate conduction properties to dis-

, . e . . ersion ones. However, some results cannot be directly ex-
disorderliness parameter. In the diffusion-dominated reglmep y

as presumed from the exact mapping between diffusion ant(’grapolated to regular lattices, because the nature of the veloc-

conduction, the diffusivity of the network reaches a constant” field depends on structuf3).
value.

The disorder length of diffusion, with the power-law dis-
tribution of conductances, scales with the disorder parameter
w in the same way as the disorder length of conduction, i.e., Thanks go to Dr. Teresa LehmaritRF) for critically
&~ p77, with v the correlation length exponent of ordinary reviewing the manuscript. The author would like to acknowl-
percolation. The scaling region of interest have been found tedge MSc. Johnny ValbueriBDVSA-Intevep for program-
be the similar to that found for conduction by Angulo and ming routines used in this research. Thanks are due to Prof.
Medina[10]. Larry Lake (UT) for reviewing the article and for encourag-

In the convective limit, the dispersivity reaches a constaning further analysis. The Gas and Oil Technology Group
value, independent of the Péclet number employed. HowGTEP at PUC-Rio provided computer time to partially de-
ever, the required value of Pe grows rapidly as the disordevelop this work. The Brazilian National Petroleum Agency
parameter decreases to approach zero. The rapid divergen@eNP) provided funding through the PRH-007 program at
of £ can be explained on the basis that the velocity field isSPUC-Rio.
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