
Hydrodynamic dispersion in a hierarchical network with a power-law distribution
of conductances

Vladimir Alvarado
Oil and Gas Program, PUC-Rio, Rua Marquês de São Vicente, 225 - Gávea 22453-900, Rio de Janeiro - RJ - Brazil

sReceived 25 November 2004; published 17 March 2005d

Dispersion is studied on a two-dimensional hierarchical pore network with a power-law distribution of
conductances, i.e.,Psgd,gm−1, with gP s0,1d, andm is the disorderliness parametersm.0d. A procedure for
computing tracer dispersion transport on hierarchical networks was developed. The results show that the
effective diffusion coefficient of the network scales similarly as conduction on the same lattice. This means that
the disorder length scales for conduction and diffusion processes are the same, and can be predicted from
percolation theory. The dispersivity,j;Di /U, was found to diverge rapidly asm→0. The result is in agree-
ment with the model developed by Bouchaud and GeorgessC.R. Acad. Sci.sParisd 3071431, 1988d. A limiting
value ofm<0.45 was found, below which the convection-dispersion equation is no longer valid.
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I. INTRODUCTION

The transport of solutes through porous media has re-
ceived considerable attention in the last decades, due in part
to the necessity of carrying out cleanup operations of subsur-
face water reservoirs. Tracer dispersion has also driven in-
vestigation because it is often used as a tool for the charac-
terization of oil and water reservoirsf1,2g. It has been known
for some time that the conventional convection-dispersion
equation does not always predict correctly the time evolution
of solute plumes in porous mediaf3g. Often, the problem can
be attributed to characteristics of the velocity fields, such as
long correlation lengths on the order of or larger than the
system size. This situation can be found in the highly hetero-
geneous distributions of hydraulic conductances, inherent to
many porous media.

The general form of the convection-dispersion equation
f4g is the following:

]C

]t
+ U · = C = = · sD · = Cd, s1d

whereC is the mean local concentration of a solute,U cor-
responds to the Darcy velocity, andD is the dispersion ten-
sor. Solute or tracer plumes that evolve as described by Eq.
s1d are referred to as Gaussianf5g. In practice, this implies
that the Central Limit Theorem holds, and the first two tem-
poral moments contain all the statistical information on the
plume f6g. It can be stated similarly for the spatial distribu-
tion.

The axial or longitudinal dispersion coefficient, i.e., the
component of the tensor along the principal direction of the
mean flow, depends in two distinct ways on the so-called
Peclet number, defined as the ratio of diffusion to convection
time scalessPe=UL /Dmd f4g. L is a typical length scale, for
instance, the system size, andDm is the diffusion coefficient
of the tracer particle. For small values of PesPe!1d, the
axial dispersion coefficient depends on molecular diffusion
asDi ~Dm sor, more precisely, asDi=Dm/t, with t being the
tortuosityd, whereas for Pe@1, but still in the creeping or
linear flow regime,Di=jU. The latter defines the convective

limit. The proportionality constantj is the so-called disper-
sivity, and it is a length scale in the system that is used to
characterize the dispersion process. The dispersivity is usu-
ally related to the correlation length of the velocity field,
which in turn originates in the permeability distributions.

A dispersion process described by Gaussian-like plumes
usually requires homogeneous properties of a medium. This
can be achieved in finite-difference formulations by enlarg-
ing the local simulation domain to contain sufficiently large
samples, but issues on upscaling of the permeability field
have to be faced. Violation of the system size requirements
frequently leads to define position- and time-dependent
transport coefficients, as the case of a dispersion coefficient
in the convection-dispersion equation. An example can be
found in systems at their conduction percolation threshold,
because they do not exhibit a characteristic length scalef7g.
That is also the case of systems with modeled fractal perme-
ability fields, for which the transport coefficient grows with-
out bound. Log-permeability fields have been found to be-
have as random fractals on scales ranging from 10 cm to
45 km f8g. Another way of exhibiting fractal properties is by
having a non-Euclidean topology or connectivityf9g.

The relevance of relating permeability length scales to
analog quantities in dispersion problems is apparent. For this
purpose, it is then necessary to study systems with well char-
acterized conductivity length scales, for which scaling is well
understood. For a highly heterogeneous system, the evalua-
tion of transport properties should be inexpensive enough so
that calculations can be carried out in large samples. Addi-
tionally, the computation of the dispersion coefficient should
be realizable in those samples.

Angulo and Medinaf10g performed renormalization cal-
culations of the effective conductance on hierarchical net-
works. Bond conductanceg was drawn from a power-law
distribution psgd=mgm−1. The parameterm can take either
positive or negative values. This parameter controls the de-
gree of heterogeneity of the medium, in a way thatm.1
approaches a homogeneous system, whilem→0 is the most
disordered case. These authors defined a disorder lengthjD
as the scale beyond which the system becomes effectively
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homogeneous. Asm→0, jD was found to diverge withm,
with the following scaling form:jD,m−n. Exponentn cor-
responds to the correlation length of ordinary percolationf7g.
Hierarchical lattices, together with a power-law distribution
of conductances, provide well characterized systems, for
which heterogeneity properties of the conductance distribu-
tion are understood. Paredes and Alvaradof11g extended the
renormalization analysis to the case of square networks.
They demonstrated that a percolation analysis suffices to
evaluate the strongest disordered limit of a family of distri-
butions; i.e., in the critical region in the vicinity ofm=0. All
of these indicate that studying conduction on hierarchical
structures provides a means to determine the scaling behav-
ior of the distribution of conductances. This well character-
ized system provides a highly heterogeneous conductance
field, which is one of the ingredients for scale-dependent
dispersion processes.

Giona et al. developed an exact renormalization theory
for linear transport problems in fractal mediaf9,12g,
convection-diffusion being a special case in their formula-
tion. Their main interest was the determination of exponents
of anomalous diffusion in fractal supports. Their scheme is
based on the discretization of the spatial differential opera-
tors, i.e., Laplace and gradient operators, and the solution to
the Laplace transform of the resulting problem. The solution
focuses, as in the work by Rouxet al. f13g, on the renormal-
ized transfer function. However, the discussion in those
works focused on cases with homogeneous conduction.

Cáceres studied non-Gaussian dispersion, the so-called
anomalous dispersion, by using multistate continuous time
random walk methodf14g. The focus of Cáceres’ research
was the understanding of the Coats-Smith model that has
been used for a long time to explain departure from Gaussian
behavior. The process requires a volume of stagnant fluid in
some pores of a given medium. In the present work, tracer
dispersion is analyzed on a regular hierarchical lattice, with a
power-law distribution of bond conductances. However, pro-
vided that all network bonds are aligned with the pressure
gradient, then there is always non-negligible flow in all
pores, in the limit of an infinite Peclet number. In this sense,
non-Gaussian dispersion may be the result of the nature of
the velocity distribution, which has been found to be fractal
on certain supportsf15g.

Tracer dispersion is investigated on a Euclidean hierarchi-
cal lattice of effective dimensionde=2. The power-law dis-
tribution of conductances is appealing, because the disorder
length scale for conductivity relates to the disorderliness pa-
rameterm. The dispersion coefficient is computed for a wide
range of Pe to show that in the hierarchical lattice, dispersion
occurs much as in square networks, from the scaling view-
point. Villermauxet al. showed this for a family of regular
self-similar lattices without geometrical disorderf16g. As in
the case of Villermauxet al., the hierarchical lattice simula-
tions should capture the controlling effects on mechanical
dispersion due to the flow field associated to the pore-size
distribution. Deviations from Gaussian behavior overall are
proposed to come from the disorderliness of the porous me-
dium in itself and not from the particular connectivity struc-
ture of the hierarchical lattice. Paredes and Alvaradof11g
showed that care must be exercised in the analysis of hierar-

chical network results for the case of conduction, so that the
appropriate percolation properties be considered. The same
should hold for hydrodynamic dispersion.

Here, the scaling of a convection-dispersion process is
studied in limits of Pe→0 and Pe→`. The effective disper-
sion coefficient is determined from the first two moments of
the transit-time distribution. In the limit of Pe→0, the trans-
port is expected to be controlled solely by molecular diffu-
sion in the lattice. This process maps exactly on the conduc-
tion problem, and hence all that is known for conduction
should apply in this limit. In the second limit of Pe→`, j is
the selected quantity.

This article is divided into five sections. After Sec. I, the
general method for obtaining moments of the residence-time
distribution sRTDd is explained in Sec. II. Because the con-
vective limit is a special case for the scheme of solution, Sec.
III is devoted to a discussion of details of the procedure in
this limit, which closely relates to that employed by Viller-
maux and Schweichf16g. Finally, the results are presented,
followed by a discussion and conclusions.

II. GENERAL RECURSION EQUATIONS FOR TEMPORAL
MOMENTS

This section describes the renormalization procedure for
the generalized bond transfer function, from which one can
derive the recursion equation for moments of the transit-time
distribution. The proposed scheme is based on the solution of
the transport problem by using a transfer-matrix algorithm
f13g. The Laplace transform of the tracer flux through each
bond can be written as follows:

S− j̃s0,sd

j̃sl,sd
D = Sassd bssd

cssd dssd
DSC̃s0,sd

C̃sl,sd
D , s2d

where −j̃s0,sd and j̃sl ,sd represent the transformed fluxes at

the inlet and outlet of a bond, respectively, andC̃s0,sd and

C̃sl ,sd are the corresponding concentrations. Entriesa, b, c,
and d contain geometrical information and fluid flow prop-
erties.

Coefficientsassd, bssd, cssd, anddssd are obtained at the
zeroth level of the lattice from the exact solution to the
Laplace transform of a local convection-diffusion equation,
plus the assumption of complete nodal mixing. Henceforth,
any linearly concentration-dependent contribution to the lo-
cal transfer function can be incorporated into the formula-
tion.

Figure 1 shows the main motif of the hierarchical struc-
ture used here. The network is constructed following a recur-
sive procedure in which each bondslinkd of the lattice is
replaced by the main motif to produce the next level of the
structure, as illustrated in the figure for three steps of this
procedure. Mass conservation for an incompressible fluid
yields the values of the pressure at the nodes and thereby the
fluid fluxes scurrentsd along the bonds, as well as the effec-
tive conductance. It is assumed that the hydraulic conduc-
tance of a given bond is proportional to the square of its
cross-sectional area; i.e.,g,As

2. The latter permits one to
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distribute the conductance alonesinstead ofAsd, and thereby
to determine fluid flow velocity. For instance,vi ,qi /gi

1/2,
where i is the bond index, andqi and vi the corresponding
fluid current and mean conduit velocity. This is simply
achieved by carrying out combinations in series and parallel
of lattice bonds. All of this is necessary to determine the
strength of the velocity field in the network for the subse-
quent solution of the bond transport equation.

Fluxes coming from adjacent bonds meeting at a node are
additive sparallel combination in Fig. 1d, so that their sum
yields the transfer function. For those bonds in series, fluxes
can be expressed in the following form for bond I:

S− j̃0

j̃1
D = SaI bI

cI dI
DSC̃0

C̃1

D s3d

and similarly for bond II:

S− j̃1

j̃2
D = SaII bII

cII dII
DSC̃1

C̃2

D , s4d

where j̃0 is the transformed incoming flux to bond I, whilej̃1
is the exiting flux for the same bond. From mass conserva-
tion applied to the tracer,j̃1 is the transformed incoming

tracer flux for bond II. From Eqss3d ands4d, the value ofC̃1
can be eliminated by writing out the expressions for the
fluxes:

j̃1 = cIC̃0 + dIC̃1, s5d

− j̃1 = aIIC̃1 + bIIC̃2. s6d

Now, the entering flux can be expressed in terms of the
concentration values at the inlet and outlet nodes, respec-

tively, C̃0 and C̃2:

− j̃0 = SaI −
bIcI

aII + dI
DC̃0 + S−

bIbII

aII + dI
DC̃2. s7d

As a result,ae=faI −bIcI / saII +dIdg and be=f−bIbII / saII

+dIdg. To find ce andde, we proceed in a similar fashion, by

putting C̃1 into Eq. s4d, as

j̃2 = − S cIIcI

aII + dI
DC̃0 + SdII −

cIIbII

aII + dI
DC̃2, s8d

which leads toce=−cIIcI / saII +dId and de=dII −cIIbII / saII

+dId. Once the recursion equations forassd, bssd, cssd, and
dssd are obtained, moments of the transit-time distribution
can be derived from the Taylor series expansion of the
Laplace transform of the exiting flux arounds=0.

The boundary condition at the inlet section of the entire

network is JIstd=dstd, such thatJ̃I =1. Hence, the Laplace

transform of the exiting flux of tracerssJ̃Od, is the transfer
function or generator of moments for the whole network
f17,18g. If all the moments are finite, one can carry out a
series expansion of the form

J̃Ossd = fJ̃Ogs=0 + sF ] J̃O

]s
G

s=0
+

1

2
s2F ]2J̃O

]s2 G
s=0

+ ¯ . s9d

Each term in the equation corresponds to a moment of the
transit time distribution; i.e.,f17g:

ktnl = s− 1dnF ]nJ̃O

]sn G
s=0

. s10d

This formulation leads to recursion equations for the co-
efficientsa, b, c, andd at different orders. In other words,
one can write renormalization expressions forae

snd, be
snd, ce

snd,
andde

snd by expanding the following expression:

S− j̃0ssd

j̃2ssd
D = Saessd bessd

cessd dessd
DSC̃0ssd

C̃2ssd
D s11d

with respect to the parameters. Once the expansion is per-
formed, coefficients at each order ins are grouped together
to obtain the renormalized coefficients at zeroth-, first-order,
etc.

Let us recall thatCOssd=0, from the boundary condition
at the outletsa sinkd. The generator of moments is then de-
termined as

− J̃Ossd =
cessd
aessd

= P̃ssd. s12d

Finally, by carrying out the expansion ons of expression
s12d, any moment can be derived from the ratiocessd /aessd.
For instance,

FIG. 1. Hierarchical lattice employed in this work. Top portion
of the figure illustrates the iterative process to generate the network.
The lower portion shows how the dispersion process is
renormalized.

HYDRODYNAMIC DISPERSION IN A HIERARCHICAL… PHYSICAL REVIEW E 71, 036304s2005d

036304-3



ktl =
ae

s1dce
s0d

sae
s0dd2 −

ce
s1d

ae
s0d . s13d

At the zeroth level in the hierarchy,assd, bssd, cssd, and
dssd correspond to the following expressions:

assd = − m− mscothms, s14d

bssd =
mse

−m

sinhms
, s15d

cssd =
mse

m

sinhms
, s16d

dssd = m− mscothms, s17d

wherem=Pe/2 andms;Pe/2+ÎsPe/2d2+s. Notice that by
construction,s as well ast are dimensionlesssnormalized by
diffusion time l /Dm, wherel is the bond lengthd. As can be
seen, the expressions involve hyperbolic functions as well as
exponential. In order to deal with large and small Peclet
numbers simultaneously, limiting formula forasnd, bsnd, csnd,
anddsnd as Pe→0 and Pe→` have been developed.

III. RECURSION EQUATIONS FOR LARGE PECLET
NUMBERS

The evaluation of the transport properties using the most
general expressions forktl and kt2l, or kst

2l, is computation-
ally expensive, even for hierarchical structures. Additionally,
the value of Pe required to reach the limit Pe→` puts a
burden on numerics; e.g., round-off errors. Expressions for
moments of the transit-time distribution can be simplified in
the purely convective limit, because all bonds of the lattice
have a nonzero fluid velocity, given that by construction all
the bonds are oriented. Hence, a simpler renormalization re-
cursion equation can be built, much on the line of the work
done by Villermauxet al. f16g.

For each bond in parallel arrangementssee Fig. 1d, there
is a volume fraction given by the ratio between the bond
fluid flux and the total flux in the effective branch; i.e.,vi
=qi /o jqj sqj denotes the fluid flux through each bond in the
arrangementd. The effective transfer function for the particu-
lar network used here can be written upon renormalization as

Gessd = fv1G1ssd + v2G2ssdg fv3G3ssd + v4G4ssdg = P̃ssd,

s18d

or in a more general form,

Gessd = p
j
So

i

viGiD
j

, s19d

where the indexi indicates a member of the set of branches
in parallel arrangements, andj is for arrangements in series.
Here, for instance,v1=q1/sq1+q2d, and similarly for all other
branches of the network. As shown in Eq.s18d, the transfer

function is the generator of moments for the RTDfP̃ssdg.
Successive moments of the transit-time distribution, at a

given stage of renormalization, can be obtained by taking

derivatives of the renormalized transfer function with respect
to thes parameter fors=0:

me
s1d = kte

nl = s− 1dnS ]nGe

]sn D
s=0

. s20d

Following the last expression forn=1 leads to the mean
transit time:

me
s1d = fv1m1

s1d + v2m2
s1dg + fv3m3

s1d + v4m4
s1dg. s21d

The superscript denotes the order of the moment; i.e.,mi
s1d

is the first-order moment of theith branch. In the expression
above, the fact thatGis0d=1 and also that

S]Gi

]s
D

s=0
= − ktil

has been employed. In addition, from mass conservation,
v1+v2=1. The recursion equation for the second moment
takes the following form:

me
s2d = fv1m1

s2d + v2m2
s2dg + 2fv1m1

s1d + v2m2
s1dg fv3m3

s1d

+ v4m4
s1dg + fv3m3

s2d + v4m4
s2dg. s22d

Mainly the first two moments of the RTD were evaluated,
because in the convection-dispersion equation, the dispersion
coefficient is independent of higher-order moments. At the
zeroth level in the lattice, in the limit of Pe→`, all moments
can be written as

mi
snd = sl i/vidn = fl i/sqi/Îgidgn, s23d

wherel i is the length of theith branchsl is the same for all
bondsd. To show possible departure from Gaussian behavior,
results of skewness are also obtained, for the limit of an
infinite Péclet number. It is known that this central moment
or cumulant should be zero for Gaussian processesf5g. From
Eq. s18d, the natural logarithm is taken, and then the succes-
sive derivatives with respect tos, evaluated ats=0, provide
expressions for the cumulants, as follows:

kn = F ]nln Gessd
]sn G

s=0
, s24d

wherekn is thenth cumulant ofGessd.
However, it is easier to compute moments recursively, and

then calculate the skewness from the first three moments as

k3 = ms3d − 3ms2dms1d + 2fms1dg3. s25d

IV. RESULTS

First, in the limit of low disordersm.0.5d, the dispersion
process is shown to occur as expected for regular networks
f19g. This means that limits of Pe→0 and Pe→` are studied
to determine whether moments of the transit-time distribu-
tion exhibit the expected dependence on system size and
Péclet number; more specifically.ktnl,L2n sL in bond unitsd,
when Pe→0. On the other hand, as Pe→`, moments of the
distribution depend on Pe asktnl,Pe−n, and with the system
size asktnl,Ln. It is also shown that the dispersivity reaches
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a constant value as Pe→`; in other words, that the ratio
Di /U becomes independent of the value of Pe.

Second, the scaling of the lattice effective diffusivity is
examined, i.e., for Pe→0, to showj as a function ofm in the
limit Pe→`. Although the scaling of the dispersion process
is of interest at any value of Pe, it is not dealt with in every
regime with respect to Pe. Up to four moments of the transit-
time distribution are computed; i.e., the values ofktnl with
n=0, 1,2,3,4, for various system sizes. The number of real-
izations varies depending on the network order.

In the simulations, Pe;kUll /Dm, wherekUl is the volu-
metric average of the microscopic bond velocity in the net-
work, andDm corresponds to the tracer diffusion coefficient
in the fluid sindependent of concentrationd. Since we are
working in the creeping flow regime, the Péclet number can
be rescaled by multiplying bond velocitiessor fluxesd by a
constant factorf17g. In the limit of Pe→0, the effective dis-
persion coefficientsDi ,Dmd relates to the variance of the
transit-time distributionst

2 in a simple wayf17g:

lim
Pe→0

Di =
L2

Î6st
2
. s26d

This relationship defines the diffusivity of the network.
On the other hand, as Pe→`, in the absence of stagnation
effectsf16g, the limiting expression connectingDi with st

2 is
the following f16,17g:

Di = st
2kUl3

2L
, s27d

or in terms of the Péclet number,

j ;
Di

kUl
, st

2Pe2

L
, s28d

which defines dispersivity in this context. The result makes
sense only whenDi is a linear function of velocity.

Low Péclet number limit „Pe\0…

Hierarchical networks of the type used here have a con-
nectivity structure that differs from Euclidean networks.
Therefore, not all nodes are equally important. This could
affect the conclusions regarding scaling of transport proper-
ties in comparison with other networks. It will be shown that
the hierarchical network yields normal results, which means
that transport properties observed are a consequence of geo-
metrical disorder alonesdistribution of conductancesd, and
not a topological featuresconnectivityd. When m<1, net-
works are quite homogeneous, and hence a diffusion process
should be a simple wandering through the lattice with not too
different a probability of entering any bondsproportional to
the cross-sectional area of the bondsd. Figure 2 shows the
first four moments of the transit-time distribution as func-
tions of the system sizesm=1.0d. Diffusion being the con-
trolling transport mechanism implies thatktnl,sL2/Dmdn, as
depicted in the plot. These results were obtained at a value of
Pe strictly equal to zero.

In previous worksf10,11g, the conductance of the network
as a function of system size could be collapsed onto a single
curve by rescalingGe andL. This was achieved by using the
asymptotic value of conductancesfor L!jDd and the disor-
der length, respectively. Diffusion and conduction processes
map exactly onto one another, and hence the scaling of the
diffusion process should be equal to that of conduction. To
verify this, simulations have been carried to determine the
effective diffusion coefficient at several values ofm swith
mø0.1d. Figure 3 summarizes our findings. As expected, the
disorder length turns out to be proportional to the correlation
length of ordinary percolation. The relationship
jD,m−nuses, with a value ofn=1.635, the same divergence
exponent of the percolation correlation length on this lattice.

FIG. 2. First four moments of the transit-time distributionsPe
=0d. The straight lines are power-law fits through the simulation
points for different values of the system sizesL=2k, in bond units,
ld andm=1.0. Temporal moments were normalized by the diffusion
time l /Dm.

FIG. 3. Scaling of the diffusion coefficient. As expected, when
the effective diffusion coefficient is normalized by using the
asymptotic value of itsfor L.jDd, all the curves collapse when the
system size is normalized by using the disorder length of the con-
duction problem.
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It should not come as a surprise that the scaling regionsm
,0.4d is similar to that found by Angulo and Medinaf10g.

High Péclet number limit „Pe\`…

To determine the transition from a diffusion-controlled
transport towards a convection-dominated regime, simula-
tions were carried out at values ofm away fromm=0, and
for lattices of various sizes. As the conductance distribution
becomes wider, in a logarithmic sense, and more disorderli-
ness appears in the network, the transition from pure diffu-
sion to hydrodynamic convection exhibits a nonlinear region
with respect to Pe that enlarges progressively before reaching
the linear dependence on Pef19g, as depicted in Fig. 4. The
latter reflects the fact that some regions of the lattice remain
practically stagnant, while others are already in the convec-
tive limit. The smaller the value ofm, the larger the effect is,
because a greater contrast of conduction exists in the system.
From the figure, it is also observed that the values of the
Péclet number required to fulfill the condition of a constant
dispersivity grows larger with decreasingm. At the same
time, the dispersivity value grows rapidly with the disorder-
liness in the distribution of conductances. This turns out to
be an indication of a possible divergence ofj, asm is dimin-
ished. Figure 5 depicts the expected dependence for mo-
ments of the RTD in the convective limit,ktnl,sPed−n.

Expressionss21d and s22d were used to calculate disper-
sivity for several values ofm. Figure 6 depictsj as a function
of m, for three network sizes. A rapid divergence is observed
for m,0.4. Notice that althoughj is a large for small values
of m, the curves corresponding toL=256 snetwork order
equal to 8d andL=4096sorder 12d overlap. This means that
the expected disorderliness is relatively small as compared to
dispersivity. However, the standard deviation forj turns out
to be too large to evaluate the disorderliness length, as was
done for conductionf11g.

One has to look into the features of the velocity distribu-
tion to understand the nature of the rapid divergence. It
should be apparent that the contrast of transit time by con-
vection is responsible for the spreading, in the purely con-
vective limit. To investigate this, the shape of the velocity
distribution was estimated from bond-velocity histograms. It
has to be to recalled that in order to computeDi in this limit
sPe→`d, it was assumed that the fluid velocity was nonzero
in all bonds. This condition can be realized only if the lowest
value of the velocity in the network is large enough to satisfy
the convective limit. Asm is set to be smaller, the velocity
distribution widens or, said differently, the contrast between
vmin andvmax grows. A large number of realizations, depend-
ing on lattice size, were accumulated to obtain relatively
smooth and detailed histograms. However, the statistics for
low velocity values do not have enough sampling, and there-
fore another indicator, Skewness, was calculatedsshown
laterd. Figure 7 represents histograms of velocity in logarith-
mic scale that clearly indicate ample distributions that ap-
proach a minimum of velocity in a power-law fashion. The
flux distribution behaves similarlysnot shownd. The slopes
of the linear part of the velocity histograms were fitted to
yield m<1.87m, but the meaning of this was not investi-
gated.

Let us now look at model presented by Bacriet al. f20g,
originally developed by Bouchaud and Georgesf21g. The
model was also discussed in a review paper by Bouchaud
and Georgesf22g, with similar conclusions. The proposed
statistical model for dispersion can account for large contrast
in convective paths and consists of a simple convective by-
pass. In the model, the dispersion coefficientsin the absence
of diffusive pathsd can be written in the following form
sBacri et al. f20g d:

Di =
kUl
2b

s1 − bd2sf + b − fbdjc, s29d

whereb is the ratio between the smallest and largest velocity
values in the system, ands1− fd is the fraction of slow by-

FIG. 4. The figure shows the transition from the diffusion con-
trolled regime for dispersion to the convective limit for three values
of m. L=1024l. st

2 andL are dimensionless.

FIG. 5. Moments of the transit-time distribution in the limit
Pe→`. L=1024l andm=0.8.
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passes.jc, on the other hand, is a typical correlation length of
the bypasses, which is attributed to the disorder length of
conduction. Ifb is a small number, then the dispersion coef-
ficient becomes proportional tob−1. Therefore,j can become
a large number, as found in the simulations. The latter would
explain the rapid divergence observed.

From the velocity distributions, the minimum and maxi-
mum velocities were recorded. The ratio was plotted versus
m to determine whether it behaves asj with respect tom
sFig. 8d. The resemblance with the result shown in Fig. 5 is
striking, indicating that the velocity distribution contains
most of the necessary information on the dispersion process.

A different way of looking at the trends observed for the
dispersivity on the lattice is by analyzing higher moments of
the RTD. As previously discussed, in order to be able to
apply the convection-dispersion equation, the hydrodynamic

dispersion process should be Gaussian. Henceforth, higher
central moments should be zero, or else additional informa-
tion would be required to describe the dispersion process.
For this purpose, the skewness was calculated over a large
number of realizations for several network sizes and values
of m. To compare adequately, the value ofk3 was normalized
by usingktl3; otherwise, the value ofk would depend on the
pressure drop set in the calculations. The mean value ofk3
should diminish as the network size is increased until reach-
ing a vanishing value.

Figure 9 showsklog10sk3dl versus logsLd for several val-
ues ofm. The idea, rather taking the mean value ofk3, was to
show the mean order of magnitude and its trend as function
of network size. Notice that for values ofm,0.45, k3 ap-
pears to diverge. A linear fit of logsk3d versus logsLd yields a
very good correlation coefficient. In principle, a prefixed low
value ofk3 could be used to determine the necessary network
size by extrapolating the trend. However,k3 does not de-

FIG. 6. Dispersivity as a function ofm. Insets
showj as a function of network size. BothL and
j are in bond units.

FIG. 7. Bond velocity distributionshistogramd at the zeroth
level of the hierarchical network. The network size is 1024. The
histogram was calculated over a large number of realizations for
each value ofm.

FIG. 8. Ratio between the largest value of fluid velocity in the
network and smallest value of velocity versusm. Network size is
1024l.
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crease with network size form,0.45. This would add to the
explanation as to whyj diverges so rapidly form,0.4.

V. CONCLUSIONS

A method for computing tracer dispersion transport was
developed and implemented in this work. Limiting cases
consisting of the purely diffusive limit, i.e., for Pe→0, and
the purely convective case, Pe→`, were also developed.
The method translates into efficient algorithms for the com-
putation of moments of the transit-time distribution in hier-
archical lattices. To model geometrical disorderliness, a
power-law distribution of conductances,Psgd,gm−1, with m
as the disorderliness controlling parameter, was used. In the
limit of low disorderliness, whenm is unity, it was shown
that the dispersion coefficient exhibits the same features ob-
served in regular networks as a function of the Péclet number
f19g. This means a diffusive behavior at low values of Pe,
and a linear dependence with respect to Pe, as Pe→`. The
transition from diffusion-controlled transport to convective
transport was shown to depend strongly on the value of the
disorderliness parameter. In the diffusion-dominated regime,
as presumed from the exact mapping between diffusion and
conduction, the diffusivity of the network reaches a constant
value.

The disorder length of diffusion, with the power-law dis-
tribution of conductances, scales with the disorder parameter
m in the same way as the disorder length of conduction, i.e.,
jD,m−n, with n the correlation length exponent of ordinary
percolation. The scaling region of interest have been found to
be the similar to that found for conduction by Angulo and
Medina f10g.

In the convective limit, the dispersivity reaches a constant
value, independent of the Péclet number employed. How-
ever, the required value of Pe grows rapidly as the disorder
parameter decreases to approach zero. The rapid divergence
of j can be explained on the basis that the velocity field is

extremely heterogeneous. The correspondence is found by
using a model developed by Bouchaud and Georgeset al.
f21g. In the model, the ratiob between the smallest and the
largest value of velocity yields the value of dispersivitysfor
b−1@1d. It is found thatb diverges similarly asj with the
disorder parameter. However, the precise dependence withb
is a function of the network structure, and the results was
shown to indicate a trend.

In real geological media, a large value of dispersivity is
frequently observed. However, the data shown here do not
imply lack of homogeneity of the system, at least in terms of
permeability or monophasic transport, but rather suggest a
lack of validity of the transport equation. It was shown that,
indeed,j reaches a constant value. The lack of convergence
of the skewness suggests that the transport equation is in-
valid below a value ofm,0.45. This means that for the
lattice sizes simulated here, non-negligible higher central
moments are to be found.

The results evidence that hierarchical networks can be
used to study the effect of geometrical disorder; in particular,
they can be employed to relate conduction properties to dis-
persion ones. However, some results cannot be directly ex-
trapolated to regular lattices, because the nature of the veloc-
ity field depends on structuref23g.
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FIG. 9. Log10sk3d sdimensionlessd versus net-
work sizesLd for several values ofm, calculated
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